My workflow 6

工作流概述

这是一个包含11个节点的复杂工作流,主要用于自动化处理各种任务。

工作流源代码

下载
{
  "id": "PGLFPj5y01s26rE1",
  "meta": {
    "instanceId": "b68f2515130d1ee83f4af1a6f2ca359fc9bb8cdbe875ca10b6f944f99aa931b5",
    "templateCredsSetupCompleted": true
  },
  "name": "My workflow 6",
  "tags": [],
  "nodes": [
    {
      "id": "82670f40-2e3b-4e02-ae52-f2c918c3aa1c",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -80,
        -600
      ],
      "parameters": {
        "color": 7,
        "width": 280,
        "height": 380,
        "content": "## Command Trigger

Copy the webhook URL, paste it into the Request URL of the Slack slash command, and complete the creation.


웹훅 URL을 복사하여 슬랙 슬래시 커맨드의 Request URL에 붙이고 생성을 완료하세요."
      },
      "typeVersion": 1
    },
    {
      "id": "28f56691-0ad5-47b1-974b-1ece4890933b",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        260,
        -600
      ],
      "parameters": {
        "color": 7,
        "height": 380,
        "content": "## Command Switch

Switch each slash command.

각 슬래시 커맨드를 분기하세요."
      },
      "typeVersion": 1
    },
    {
      "id": "9dc9ca95-e29d-44d9-9e09-b2a72d9ad23a",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        600,
        -600
      ],
      "parameters": {
        "color": 7,
        "width": 360,
        "height": 380,
        "content": "## Create AI Messages"
      },
      "typeVersion": 1
    },
    {
      "id": "025c5a59-06b6-4b6d-b3e0-aa782a133c97",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1060,
        -600
      ],
      "parameters": {
        "color": 7,
        "height": 340,
        "content": "## Send a Slack Message"
      },
      "typeVersion": 1
    },
    {
      "id": "cb60e9b0-a9a8-4dd6-9aa3-9d22c7f5f537",
      "name": "Webhook",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -20,
        -380
      ],
      "webhookId": "1bd05fcf-8286-491f-ae13-f0e6bff4aca6",
      "parameters": {
        "path": "1bd05fcf-8286-491f-ae13-f0e6bff4aca6",
        "options": {
          "responseCode": {
            "values": {
              "responseCode": 204
            }
          }
        },
        "httpMethod": "POST"
      },
      "typeVersion": 2
    },
    {
      "id": "d60cfb45-df3d-4ab1-8e7e-1b2e81bc5b34",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        320,
        -380
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "ask",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.body.command }}",
                    "rightValue": "/ask"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "another",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "a0924665-de21-4d9b-a1d1-c9f41f74ee09",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.body.command }}",
                    "rightValue": "/another"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {}
      },
      "typeVersion": 3.2
    },
    {
      "id": "810ac4dd-8241-4486-b183-74cbde3d58e7",
      "name": "Basic LLM Chain",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        640,
        -500
      ],
      "parameters": {
        "text": "={{ $json.body.text }}",
        "promptType": "define"
      },
      "typeVersion": 1.5
    },
    {
      "id": "f173fe2d-45e7-460c-aa33-d5509b6d59b9",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        720,
        -340
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "4752da4c-b013-4469-a3bc-386d3ab3d15d",
      "name": "Send a Message",
      "type": "n8n-nodes-base.slack",
      "position": [
        1120,
        -460
      ],
      "webhookId": "a37abc2a-6e8c-4c00-8543-3f313b300df6",
      "parameters": {
        "text": "={{ $json.text }}",
        "select": "channel",
        "channelId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Webhook').item.json.body.channel_id }}"
        },
        "otherOptions": {
          "includeLinkToWorkflow": false
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "c2f5dbcc-8283-47ab-b19a-810ad526d519",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -80,
        -1060
      ],
      "parameters": {
        "color": 7,
        "width": 340,
        "height": 400,
        "content": "## 슬랙 Slash Command와 채널 메시지로 챗봇 만들기 🤖

이 튜토리얼에서는 n8n을 활용해 슬랙에서 동작하는 AI 챗봇을 만드는 방법을 알려드립니다. 슬래시 커맨드를 통한 개인 메시지부터 공개 채널에서의 자동 응답까지, 실용적인 챗봇 구현 방법을 단계별로 설명합니다. 슬랙 앱 설정부터 n8n 노드 구성, 웹훅 트리거 설정, AI 봇 연동까지 하나하나 자세히 다룹니다.

유튜브 링크:
https://www.youtube.com/watch?v=UpudYFCWaIM
"
      },
      "typeVersion": 1
    },
    {
      "id": "4ecdfdfa-8886-47c6-b9df-ac45321b0cea",
      "name": "Sticky Note10",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        300,
        -1060
      ],
      "parameters": {
        "color": 7,
        "width": 340,
        "height": 400,
        "content": "## Create an AI chatbot with Slack slash commands! 🤖

In this tutorial, we'll show you how to create an AI chatbot that works in Slack using n8n. We'll explain step by step how to implement a practical chatbot, from personal messages through slash commands to automatic responses in public channels. We'll cover everything in detail, from Slack app configuration to n8n node setup, webhook trigger configuration, and AI bot integration.

The YouTube video is provided in Korean.

Youtube Link:
https://www.youtube.com/watch?v=UpudYFCWaIM
"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "de554ae6-98d5-4841-9ed6-cb68d2c1bc7f",
  "connections": {
    "Switch": {
      "main": [
        [
          {
            "node": "Basic LLM Chain",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Webhook": {
      "main": [
        [
          {
            "node": "Switch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Basic LLM Chain": {
      "main": [
        [
          {
            "node": "Send a Message",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Basic LLM Chain",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}

功能特点

  • 自动检测新邮件
  • AI智能内容分析
  • 自定义分类规则
  • 批量处理能力
  • 详细的处理日志

技术分析

节点类型及作用

  • Stickynote
  • Webhook
  • Switch
  • @N8N/N8N Nodes Langchain.Chainllm
  • @N8N/N8N Nodes Langchain.Lmchatopenai

复杂度评估

配置难度:
★★★★☆
维护难度:
★★☆☆☆
扩展性:
★★★★☆

实施指南

前置条件

  • 有效的Gmail账户
  • n8n平台访问权限
  • Google API凭证
  • AI分类服务订阅

配置步骤

  1. 在n8n中导入工作流JSON文件
  2. 配置Gmail节点的认证信息
  3. 设置AI分类器的API密钥
  4. 自定义分类规则和标签映射
  5. 测试工作流执行
  6. 配置定时触发器(可选)

关键参数

参数名称 默认值 说明
maxEmails 50 单次处理的最大邮件数量
confidenceThreshold 0.8 分类置信度阈值
autoLabel true 是否自动添加标签

最佳实践

优化建议

  • 定期更新AI分类模型以提高准确性
  • 根据邮件量调整处理批次大小
  • 设置合理的分类置信度阈值
  • 定期清理过期的分类规则

安全注意事项

  • 妥善保管API密钥和认证信息
  • 限制工作流的访问权限
  • 定期审查处理日志
  • 启用双因素认证保护Gmail账户

性能优化

  • 使用增量处理减少重复工作
  • 缓存频繁访问的数据
  • 并行处理多个邮件分类任务
  • 监控系统资源使用情况

故障排除

常见问题

邮件未被正确分类

检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。

Gmail认证失败

确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。

调试技巧

  • 启用详细日志记录查看每个步骤的执行情况
  • 使用测试邮件验证分类逻辑
  • 检查网络连接和API服务状态
  • 逐步执行工作流定位问题节点

错误处理

工作流包含以下错误处理机制:

  • 网络超时自动重试(最多3次)
  • API错误记录和告警
  • 处理失败邮件的隔离机制
  • 异常情况下的回滚操作